Bornological convergences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bornological Quantum Groups

We introduce and study the concept of a bornological quantum group. This generalizes the theory of algebraic quantum groups in the sense of van Daele from the algebraic setting to the framework of bornological vector spaces. Working with bornological vector spaces, the scope of the latter theory can be extended considerably. In particular, the bornological theory covers smooth convolution algeb...

متن کامل

Uniformizable and Realcompact Bornological Universes

Bornological universes were introduced by Hu in [11] and obtained renewed interest in recent articles on convergence in hyperspaces and function spaces and optimization theory. In [11] and [12] Hu gives a necessary and sufficient condition for which a bornological universe is metrizable. In this article we will give a characterization of uniformizable bornological universes. Furthermore, a cons...

متن کامل

Spaces not distinguishing convergences

In the present paper we introduce a convergence condition (Σ) and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.

متن کامل

Hausdorff Dimension in Convex Bornological Spaces

For non-metrizable spaces the classical Hausdorff dimension is meaningless. We extend the notion of Hausdorff dimension to arbitrary locally convex linear topological spaces, and thus to a large class of non-metrizable spaces. This involves a limiting procedure using the canonical bornological structure. In the case of normed spaces the new notion of Hausdorff dimension is equivalent to the cla...

متن کامل

Locally Lipschitz Functions and Bornological Derivatives

We study the relationships between Gateaux, Weak Hadamard and Fréchet differentiability and their bornologies for Lipschitz and for convex functions. AMS Subject Classification. Primary: 46A17, 46G05, 58C20. Secondary: 46B20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2004

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.04.046